Star formation efficiency in the outer filaments of Centaurus A (Salomé et al., accepted to A&A; Salomé et al., in prep.)

Salomé Quentin<sup>1</sup>, Salomé Philippe<sup>1</sup>, Combes Françoise<sup>1,2</sup>, Hamer Stephen<sup>3</sup>

<sup>1</sup>LERMA, Observatoire de Paris <sup>2</sup>Collège de France <sup>3</sup>CRAL, Observatoire de Lyon

16 December 2015



Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

#### Introduction: AGN feedback



Supernovae reduce SF efficiency through galactic fountains. But this process is too weak to regulate star formation in massive galaxies.

AGN feedback: interaction between energy generated by accretion, and the gas in the host galaxy. It maintains a heating/cooling balance.

## Introduction: AGN feedback

Accreting gas, the central SMBH emits energy. Depending on how this energy is released, there are two kinds of AGN feedback:

- $\bullet~\mbox{Radiative mode}~\rightarrow~\mbox{large amount of radiation}$
- Jet mode  $\rightarrow$  kinetic energy

The radiative mode produces winds of gas due to the radiative pressure. In the jet mode, the energy is released through jets of particles  $\rightarrow$  sometimes observed in radio.

Some examples suggest that AGN feedback may also trigger star formation. The filaments of Centaurus A is often invoked as an example of star formation triggered by the radio jet.

## Introduction: Centaurus A



Schiminovich et al. (1994) Charmandaris et al. (2000)



•  $4.3\times 10^7~M_{\odot}$  of  $H_2$  associated with the shells

600

1000

- CO gas aligned with the shells and the radio jet
- Optical filaments along the jet

## Introduction: Centaurus A



- HST observation of the inner filament
- Strong  $H\alpha$  emission:  $M_{H\alpha} = 2.1 \times 10^5 \; M_{\odot}$
- Young stellar population near the SW tip
- Mass of young stars:  $M_* \sim (2-8) \times 10^3 \ M_\odot$
- A weak shock have compressed a molecular gas cloud, triggering the observed SF?

## Introduction: Centaurus A



- HST observation of the inner filament
- Strong H $\alpha$  emission:  $M_{H\alpha} = 2.1 \times 10^5 \ M_{\odot}$
- Young stellar population near the SW tip
- Mass of young stars:  $M_* \sim (2-8) \times 10^3 \; M_{\odot}$
- A weak shock have **compressed** a molecular gas cloud, **triggering** the observed SF?

#### A multi-wavelength study



#### A multi-wavelength study

We gathered archival data of the outer filaments in FUV, IR and CO. We also searched for HCN and HCO<sup>+</sup> and observed optical emission lines. The filament extend on  $\sim 8~{\rm kpc}$  at a distance of  $\sim 13.5~{\rm kpc}$  from the galaxy, at the interaction of the radio jet with an Hi shell.



I do not discuss the origin of the gas!!! I focus on the effect of the jet on the gas located along its direction.

#### A multi-wavelength study

We gathered archival data of the outer filaments in FUV, IR and CO. We also searched for HCN and HCO<sup>+</sup> and observed optical emission lines. The filament extend on  $\sim 8~kpc$  at a distance of  $\sim 13.5~kpc$  from the galaxy, at the interaction of the radio jet with an HI shell.



6/15

#### A multi-wavelength study



- FUV emission with GALEX (Neff et al. 2015)
- **FIR data** from Herschel with PACS and SPIRE

## A multi-wavelength study



- FUV emission with GALEX (Neff et al. 2015)
- **FIR data** from Herschel with PACS and SPIRE
- CO(1-0) and CO(2-1) with SEST (Charmandaris et al. 2000)

## A multi-wavelength study



- FUV emission with GALEX (Neff et al. 2015)
- **FIR data** from Herschel with PACS and SPIRE
- CO(1-0) and CO(2-1) with SEST (Charmandaris et al. 2000)
- CO(2-1) with APEX on September 2015

## A multi-wavelength study

We gathered archival data of the outer filaments in FUV, IR and CO. We also searched for HCN and HCO<sup>+</sup> and observed optical emission lines. The filament extend on  $\sim 8~kpc$  at a distance of  $\sim 13.5~kpc$  from the galaxy, at the interaction of the radio jet with an HI shell.



- FUV emission with GALEX (Neff et al. 2015)
- **FIR data** from Herschel with PACS and SPIRE
- CO(1-0) and CO(2-1) with SEST (Charmandaris et al. 2000)
- CO(2-1) with APEX on September 2015
- MUSE observations on the VLT

□ ▶ ◀ 🗗 ▶ ◀ 볼 ▶ ◀ 볼 ▶ 볼 | 될 수 있었다. 6/15

## A multi-wavelength study



- FUV emission with GALEX (Neff et al. 2015)
- **FIR data** from Herschel with PACS and SPIRE
- CO(1-0) and CO(2-1) with SEST (Charmandaris et al. 2000)
- CO(2-1) with APEX on September 2015
- MUSE observations on the VLT
- HCN(1-0) and HCO<sup>+</sup>(1-0) with ATCA on June 2014
- ALMA archive CO(2-1) data

The SFR was estimated via the FUV (GALEX) and IR (Herschel) emission. The IR luminosity was computed by fitting the SED with a modified black-body.

- uncertainties about the IR fluxes is  $\sim 10\%$  (background extraction)
- dust mass very sensitive to the uncertainties on the background extraction
- $\bullet\,$  uncertainties on the SFR is of the order of  $\sim 10-30\%$

The SFR was estimated via the FUV (GALEX) and IR (Herschel) emission. The IR luminosity was computed by fitting the SED with a modified black-body.

- uncertainties about the IR fluxes is  $\sim 10\%$  (background extraction)
- dust mass very sensitive to the uncertainties on the background extraction
- $\bullet\,$  uncertainties on the SFR is of the order of  $\sim 10-30\%$
- $\bullet\,$  in the whole region (8.7  $\times\,5.8~kpc$ ):  $SFR\,\sim\,4\,\times\,10^{-3}~M_\odot.yr^{-1}$
- $\bullet\,$  for each CO pointing:  $SFR \sim 10^{-5} 10^{-4}\;M_\odot.yr^{-1}$

## CO properties

- The SEST data consist in a map of 17 pointings. CO emission detected for 10 positions (including 2 in CO(2-1) only).
- The CO data from APEX contain 20 pointings. All the positions except one are detected in CO(2-1).
- $\bullet\,$  The CO luminosity  $L_{\rm CO}'$  is estimated with the formula from Solomon et al. (1997).
- For the CO(2-1) emission, a factor CO(2-1)/CO(1-0)~ 0.55 (Charmandaris et al. 2000) is applied.
- $M_{H_2} \sim 2.5 \times 10^5 3 \times 10^6 M_{\odot}$  in  $44'' \sim 725$  pc (SEST);  $M_{H_2} \sim 6 \times 10^5 - 1.3 \times 10^7 M_{\odot}$  in  $27'' \sim 450$  pc (APEX)

In the case of low-metallicity environments, the cold molecular gas mass could be under estimated. The  $CO/H_2$  conversion factor must be corrected by a factor that depends on the gas-to-dust ratio (Leroy et al. 2013).



## Metallicity correction

In the case of low-metallicity environments, the cold molecular gas mass could be under estimated. The  $CO/H_2$  conversion factor must be corrected by a factor that depends on the gas-to-dust ratio (Leroy et al. 2013).



Metallicity slightly subsolar, with local variations of 12 + log(O/H) between 8.3 and 8.6. Lead to gas-to-dust ratio of  $\sim 200 - 400$  (Rémy-Ruyer et al. 2014).

## Star formation law: a correlation between H<sub>2</sub> and SFR



<sup>10/15</sup> 

## Gas and SFR surface densities in the filaments



11/15

#### Gas and SFR surface densities in the filaments



11/15

## Star formation law: scale dependency



## ALMA resolved molecular gas map



#### ALMA resolved molecular gas map



#### Cycle 1 observations; 16 antennas

3 clumps (d =  $2^{\prime\prime} \sim 30 \text{ pc}$ ) in CO(2-1)

- $S_{CO}\Delta v \sim 3.0 \text{ Jy.km.s}^{-1} \Rightarrow M_{H_2} \sim 8.7 \times 10^4 \text{ M}_{\odot}$
- HCN not detected: 
  $$\begin{split} &S_{HCN} \Delta v < 33.5 \text{ mJy.km.s}^{-1} \\ &(f_{dense} \lesssim 23\%) \end{split}$$
- $\alpha_{\rm vir} = 5\sigma_{\rm c}^2 R_{\rm c}/({\rm GM_c}) \sim 10 16$   $\Rightarrow$  no gravitational collapse, turbulent gas?

| Clump | V <sub>0</sub>        | $\Delta v$            | M <sub>Ho</sub>      |
|-------|-----------------------|-----------------------|----------------------|
|       | (km.s <sup>-1</sup> ) | (km.s <sup>-1</sup> ) | $(10^4 \ M_{\odot})$ |
| 1     | -231                  | 12.5                  | $4.0 \pm 1.7$        |
| 2     | -222                  | 8.0                   | $2.6 \pm 1.7$        |
| 3     | -214                  | 7.5                   | $2.1 \pm 1.5$        |

## Conclusion and outlook

Conclusion:

- whole region 8.7 × 5.8 kpc: SFR = 2 × 10<sup>-3</sup>  $M_{\odot}$ .yr<sup>-1</sup>,  $M_{gas} = 2 \times 10^7 M_{\odot}$  $\Rightarrow t_{dep} \sim 10 \text{ Gyr}$
- star formation seen in  ${\rm H}\alpha$  along the filaments
- $\bullet\,$  if we assume  $t_{dep}\sim 2\,Gyr$  then only 10% of the molecular gas form stars
- need high spatial resolution to explore the jet/gas interaction in details

Outlook/prospect:

- ALMA proposal for Cycle 3 (grade C; filler project)
- KMOS proposal to observe H<sub>2</sub> emission and look for turbulence contribution
- Kaneda et al. (2008): galaxies with turbulence that may suppress SF (NOEMA; B rated)
- NGC4258: the radio jet within the ISM produces a shock and a cavity (NOEMA; B rated)

## Prospect: ALMA Cycle 4 pre-announcement

ALMA Cycle 4 will start in October 2016 (for 12 months):  $\sim 3000\,h$  of 12m Array science observations. Key dates for Cycle 4:

| 22 March 2016  | Call for Proposals and observing tool |  |
|----------------|---------------------------------------|--|
| 21 April 2016  | Proposal deadline                     |  |
| August 2016    | Results of the proposal review        |  |
| October 2016   | Start of ALMA Cycle 4 observations    |  |
| September 2017 | End of Cycle 4 observations           |  |

Detailed information on the capabilities in Cycle 4 will be published in the Call for Proposals. Anticipated capabilities include:

- At least 40×12m Array + 10×7m antennas (short baselines) + 3×12m antennas (single-dish maps) in the ACA
- Bands 3, 4, 6, 7, 8, 9, 10 (wl: 3.1, 2.1, 1.3, 0.87, 0.74, 0.44, and 0.35 mm)
- Nine configurations with maximum baselines from 155 m to 12.6 km
- Large programs (>50 h)

https://almascience.eso.org/news/alma-cycle-4-pre-announcement

## Appendix: High resolution and large scale map of the outer filaments



ALMA proposal (Cycle 3); filler project

- Mapping CO(1-0) emission with ALMA in configuration C36-3 (1.2", ie 20 pc)
- First high resolution map of the gas in the filaments
- Statistical study of the clumps, based on their mass and size; study the stability
- Determine the large scale dynamics of the gas along the 6' (6 kpc) filaments
- Size of the interaction? in small located regions or in a coherent large-scale structure?

## Appendix: The origin of SF quenching in the outer filaments



#### KMOS proposal

- combine H<sub>2</sub> KMOS observations with the CO(2-1) emission from APEX
- Warm molecular gas mass present and local kinematic information
- Study the effect of turbulent kinetic energy
- Proposal made during period 97A: request 3h

## Appendix: Kaneda sample with NOEMA



Guillard et al. (2012)

- Radio galaxies with fast outflows and strong H<sub>2</sub> emission
- We proposed to map 4 galaxies of the sample in CO(2-1)
- CO distribution → fraction of cold to warm molecular gas
- CO kinematics → rate of energy dissipation
- ~ 20.5h on-source with NOEMA (7 antennas); B rated

# Appendix: NGC 4258 with NOEMA



- unique example of jet-ISM interaction in the plane
- narrow tunnel excavated in the molecular gas disc
- dense gas pushed to the cavity walls
- aim to determine the physical processes at the jet-ISM interface