

Layout

- LOFAR:
 - Problems
 - Algorithms for post-processing adaptative optics

- Extragalactic Surveys KSP
 - Surveys
 - Targetted observations

LOFAR

3C295 Observation (110-190 MHz)

... When Direction Dependent Effects (DDE) become a problem : Beam

LOFAR stations are phased arrays

- Beam is variable in frequency and time
- Projection of the dipoles in the sky is non trivial
- Beam can be station-dependent
- Individual clock effects

--> Strong effects on polarisation

... When Direction Dependent Effects (DDE) become a problem : Ionosphere/troposphere

The Measurement Equation

Hamaker 1996

The Measurement Equation

Hamaker 1996

Finding those terms is extremely difficult and costy

The Measurement Equation

Finding those terms is extremely difficult and costy

- Tasse 2014 and Smirnov & Tasse 2015 :
 - We describe a new algorithm to solve this problem
 - Based on Wirtinger derivative $\frac{\partial \overline{z}}{\partial z} = 0 \text{ and } \frac{\partial z}{\partial \overline{z}} = 0$
 - Jacobian & Hessian become sparse & compact
 - Huge algorithmic gain

Bootes field (not selfcaled)

Precalibrated by Wendy Williams

Using losoto (Gasperin et al.)

- Clock correction
- offset

DDFacet result:

- 9 degrees
- ~110 facets
- 20.000 pixels
- 2"/pixel
- 50 subbands
- ~310 uJy rms

Computing time: 6 hours (10 major cycles)

Bootes field: WITHOUT and WITH DDE correction

Bootes field: WITHOUT and WITH DDE correction

Bootes field : WITHOUT and WITH DDE correction

Bootes field: WITHOUT and WITH DDE correction

Galaxy formation and AGN evolution

LOFAR Tier-1 surveys

- 120-160 MHz: 5" resolution, 100µJy/beam sensitivity
- PI: Huub Röttgering
- Highest redshift radio sources: George Miley
- Clusters and cluster halo sources:
 - Gianfranco Brunetti & Marcus Brügen
- Starforming galaxies at moderate and high redshifts:
 - Peter Barthel & Matt Lehnert
- AGN at moderate redshift: Philip Best
- Detailed studies of low-redshift AGN:
 - Raffaella Morganti
- Nearby Galaxies:
 - Krzysztof Chyzy & John Conway
- Galactic radio sources: Glenn White
- Cosmological studies: Matt Jarvis

Mosaicing

Jets

Nearby galaxies

Bootes field 8-hour integration

Somewhere in the Bootes field ...

Somewhere in the Bootes field ...

Somewhere in the Bootes field ...

NGC 4258 (M106)

LOFAR ~ 130 MHz

Optical + Chandra

Dataset from Tim Shimwell reduced with Wirtinger calibration

Toothbrush cluster

van Weeren 2014

Toothbrush cluster

van Weeren 2014

Abell 2256

120-180 MHz 5 arcsec 130 µJy/beam

Image courtesy: R. van Weeren

... and slide taken from Chiara Ferarri

Conclusion

- LOFAR is already producing great results
 - Feedback processes
 - Galaxy cluster physics
 - Detailed AGN Physics
- Single pointing observations (Lockman, XMM-LSS, COSMOS, BOOTES, ATLAS, etc)
- + Tier-1
 - Understand Radio-FIR correlation
 - Nearby AGN studies
 - Hot/Cold accretion modes at z<1
 - High redshift radio galaxies
- Tier 2-3 + Deep optical/IR/FIR
 - Large radio quiet AGN samples
 - AGN activity and SF at z~2-4
 - + unknowns?

